Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ital J Food Saf ; 12(3): 11290, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37680315

RESUMO

The cooling applied during the firming and brining processes represents an important production step in mozzarella cheese-making. The temperature fluctuations of the cooling water can negatively affect the hygiene, composition, and quality of mozzarella. Some sustainable cooling systems can minimize this problem by using hot process fluids as heat sources to generate refrigerated energy. This study aimed to evaluate the effects of a new cooling system equipped with a water-ammonia absorption chiller (MA) on the characteristics of buffalo mozzarella through a comparative study with products cooled with a traditional ice water chiller (MT). The buffalo mozzarella cheese manufacture was monitored, and the samples were analyzed for chemical, nutritional, microbiological, and sensory characteristics. The MT samples showed an overall weight loss of 7.4% compared to an average of 2.8% for the MA samples. The MT samples were characterized by greater sapidity than the MA ones, which instead showed a higher moisture content that increased juiciness. The microbiological analysis showed a lower concentration of mesophilic bacterial load in the MA samples than in the MT ones [difference of 1 Log (CFU/g)], which is probably due to the low and constant temperatures that reduced the permanence time of the mozzarella in the vats (firming and brining). This study represents a preliminary positive evaluation of the use of this sustainable cooling system for mozzarella cheese, which is useful for dairy plants with an annual cheese production volume sufficient to justify the operating cost of the plant and the annual energy cost.

2.
Foods ; 12(15)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37569168

RESUMO

This study involves an investigation of the effects of various cooking temperatures, freeze-thaw processes, and food preservatives on the quality and shelf-life of sous vide Mediterranean mussels. Cooking temperatures of 80 °C or above significantly improved the microbiological quality, with bacterial counts remaining within the acceptability range for human consumption even after 21 days of refrigerated storage. Fast freezing followed by slow thawing preserved the highest moisture content, potentially improving texture. Sensory analysis revealed that refrigerated sous vide mussels maintained a comparable taste to freshly cooked samples. Frozen samples reheated via microwaving exhibited more intense flavour than pan-reheated or fresh mussels. Food additives, including citric acid, potassium benzoate, and potassium sorbate, alone or in combination with grape seed oil, significantly reduced total volatile basic nitrogen and thiobarbituric acid-reactive substances during 28 days of storage, indicating decreased spoilage and lipid oxidation. Mussels with a combination of these additives registered a nitrogen content as low as 22 mg of N/100g after 28 days, well below the limit of acceptability (<35 mg of N/100g). Food additives also inhibited bacterial growth, with mesophilic bacteria count below 3.35 Log CFU/g after 28 days, compared with 5.37 Log CFU/g in control samples. This study provides valuable insights for developing optimal cooking and preservation methods for sous vide cooked seafood, underscoring the need for further research on optimal cooking and freeze-thaw protocols for various seafood types.

3.
Foods ; 12(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36766061

RESUMO

Wet-aging (WA) and dry-aging (DA) methods are usually used in the beef industry to satisfy the consumers' tastes; however, these methods are not suitable for all anatomical cuts. In this study, WA and DA were applied to improve the quality of two cuts of Charolais beef (Longissimus dorsi and Semitendinosus). For 60 days (i.e., 2 days, 15 days, 30 days and 60 days of sampling), a physicochemical, rheological, and microbiological analysis were performed at WA (vacuum packed; temperature of 4 ± 1 °C) and at DA (air velocity of 0.5 m/s; temperature of 1 ± 1 °C; relative humidity of 78 ± 10%) conditions. The results showed that the aging method influenced the aging loss (higher in the DA), cooking loss (higher in the WA), malondialdehyde concentration (higher in the DA) and fatty acid profile (few changes). No differences in the drip loss and color were observed, which decreased after 30 days of aging. The WBSF and TPA test values changed with increasing an aging time showing that the aging improved the tenderness of meat regardless of the aging method. Moreover, the aging method does not influence the microbiological profile. In conclusion, both WA and DA enhanced the quality of the different beef cuts, suggesting that an optimal method-time and aging combination could be pursued to reach the consumers' preferences.

4.
Foods ; 12(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36832779

RESUMO

The buffalo dairy sector is extending its boundaries to include new buffalo cheese productions beyond mozzarella, overcoming some barriers that make cheeses expensive and unsustainable. This study aimed to evaluate the effects of both the inclusion of green feed in the diet of Italian Mediterranean buffaloes and an innovative ripening system on buffalo cheese quality, providing solutions capable of guaranteeing the production of nutritionally competitive and sustainable products. For this purpose, chemical, rheological, and microbiological analyses were carried out on cheeses. Buffaloes were fed with or without the inclusion of green forage. Their milk was used to produce dry ricotta and semi-hard cheeses, ripened according to both respective traditional (MT) and innovative methods (MI); these are based on automatic adjustments of climatic recipe guided by the continuous control of pH. Green feed enhances the nutritional profile of the final products (high content of MUFAs and PUFAs). As far as the ripening method is concerned, to our knowledge, this is the first study that tests aging chambers, commonly used for meat, for the maturing of buffalo cheeses. Results pointed out the MI validity also in this field of application, as it shortens the ripening period without negatively compromising any of desirable physicochemical properties and the safety and hygiene of the final products. Conclusively, this research highlights the benefits of diets rich in green forage on productions and provides support for the ripening optimization of buffalo semi-hard cheeses.

5.
Ital J Food Saf ; 11(3): 10466, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36120529

RESUMO

Fresh fishery products are highly perishable foods mainly due to their high-water content and high level of pH which act as promoters of spoilage processes. In these matrices, the deterioration phenomena are the result of the action of oxidative, and enzymatic processes due in part to the presence of specific microorganisms. Indeed, the microbial communities responsible for spoilage are a small fraction of the flora detectable in the fish and are known as specific spoilage organisms (SSOs). In the last decades, the scientific community has worked to achieve the ambitious goal of reducing the impact of microbial deterioration on food losses through innovative solutions, including antimicrobial packaging. The goal of this study was to evaluate the efficacy of an active polypropylene (PP)- based packaging functionalized with the antimicrobial peptide 1018K6 to extend the shelf life of dolphinfish burgers (Coryphaena hippurus) by evaluating its effect on sensorial and microbiological profile. The microbiological results showed an evident antimicrobial activity of the active packaging against hygiene indicator microorganisms and SSOs, recording a reduction of about 1 Log (CFU/g) of their concentrations compared to those of the control groups. Furthermore, a significant influence of functionalized packaging on the organoleptic characteristics was noted, accentuating the differences in freshness between the two experimental groups. This work confirmed the hypothesis of considering antimicrobial packaging as a potential tool capable of slowing down surface microbial replication and, therefore, extending the shelf-life and improving the health and hygiene aspect of fresh fish products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...